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=PrL Introduction

[NeuroMechFIy,]a neuromechanical model of adult
Drosophila melanogaster

Victor Lobato-Rios', Shravan Tata Ramalingasetty?3, Pembe Gizem Ozdil'23, Jonathan Arreguit®?,
Auke Jan ljspeert? and Pavan Ramdya '™

Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physi-
cal environment. Accessing and understanding the interplay between these elements requires the development of integra-
tive and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the
widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a
physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable
use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements
during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise
unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neu-
ral networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can
increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their
physical surroundings.
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c=PFL NeuroMechFly

e Neuromechanical model of the Drosophila
e Open-source computational framework

e 4 independent computational modules :
Physics-based simulation environment
Biomechanical exoskeleton
Muscle models

Neural network controllers
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cPFL Scientific Background:

Connectomics

| et OpenWorm

Szigeti, B. et al. Openworm: an open-science approach to modeling Caenorhabditis
elegans. Front. Comput. Neurosci. 8, 137 (2014)
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LEAP

Genetic targeting
of murens for

: recordings and
periurbations

e Deep-learning-based method for
predicting the positions of animal
body parts

e Graphical interface for labeling of
body parts and training the network

e Offers fast predictions on new data

Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat.
Methods 16, 117-125 (2019)
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http://drive.google.com/file/d/1UMV3ItpJD7otDFQ1sg1M-6w1Q1zp9c1O/view

cEPFL Scientific Background:

a

MNeuromechanical
models -

Quantification of
behaviour -
Hingmatics

e Two-photon calcium imaging %

e Genetically encoded calcium sensor

e Monitor behaviour and physiology Ej

Seelig, J. D. et al. Two-photon calcium imaging from head-fixed Drosophila during
optomotor walking behavior. Nat. Methods 7, 535-540 (2010)
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cEPFL Scientific Background:

Meuramechanical

Connectomics
| data

midels
Quantification of Genetic targeting
behaviour - . of peurens for
Ringmatics recordings and
periurbations

e Present the circuitry of a large fraction
of the brain of the fruit fly Drosophila
melanogaster

e Provide detalled circuits consisting of
neurons and their chemical synapses

Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central
brain. eLife 9, e57443 (2020)
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=P~L Limitations of Previous Models

e Lack morphological accuracy, needed for mass
distribution, compliance and physical constraints

e Lack muscle models and their associated passive
dynamical properties

e Lack neural networks or other control architectures
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=PrL Methods

Goal : Obtained the model’'s biomechanical exoskeleton and defined the degrees of

Computational =~ " pamamenimput . 'Biological * -~ ~tatistics and locomotor speeds
NeuroMechFly Computational predictions Drosophila melanogaster

a Structure and biomechanics &\ (migtomography
- “ & “~. M

Morphology and joints g

DoFs
3D joint angles

A A

Joint torques and forces

Contact mechanosensing

Kinematic statistics

Network topologies

@
Locomotor speeds %

Neural network NeuroMechFly
parameters behavioral output
Introduction Methods

Discussion

a. Obtained model's exoskeleton and joints

b. Inferred ground reaction forces, joint
torques, and tactile contacts by
replaying measured leg kinematics in a
biomechanical simulation.

c. Real limb kinematics guided evolutionary
optimization of neuromuscular
parameters.

Results
Conclusion



£PFL  constructing the Biomechanical Model
. B d

X-ray microtomography X-ray microtomography data Thresholded data Polygon mesh
preparation

Separated segments Reassembled and rigged Textured
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£PFL | dentification of the minimum DoFs

Goal : Have a minimum number of DoF because we want to build the simplest possible model.

To construct the leg’s kinematics, they focused on two main movements :

Forward walking Grooming
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=PrL Identificati minimum DoFs

6 base DoFs ...
m  Thorax—coxa (ThC): Elevation—Depression, m Femur-tibia (FTi): Flexion—Extension
Protraction—Retraction, Rotation.
m Coxa-trochanter (CTr): Flexion—Extension m Tibia—tarsus (TiTa): Flexion-Extension
ThC roll - m Coxa-trochanter (CTr): Rotation ... +1
ThC
itch ThC yaw]
FTi ; CTr roll-
pitch — CTr
pitch

-TiTa
pitch l
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£PFL | dentification of the minimum DoFs

Walking Grooming
- Only 6 DoFs used to replay walking and grooming.
- Problem : Observed consistent out-of-plane leg movements
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Methods

Inverse kinematics optimization of joint angles
Problem : Still observed consistent out-of-plane leg movements
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£PFL | dentification of the minimum DoFs

Walking Grooming
- Extra DoF might be needed at the CTr joint to accurately
replicate real fly leg movements.
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ePrl Inferring Joint Torques & Contact Forces

Kinematic replay
‘ \ DoFs 3D pose estimates

3D joint angles "o\

Joint torques and forces

Contact mechanosensing q

Locomotor kinematics

e Kinematic Replay
e PD Controller
e Morphological Accuracy
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=PrL Inferring Joint Torques & Contact Forces

Kinematic Replay for - _ AR e
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